

POLYTOPES & COMBINATORICS

SIMPLICIAL COMPLEX

simplicial complex = collection of subsets of X downward closed

exm:

$$X = [n] \cup [n]$$

$$\Delta = \{ I \subseteq X \mid \forall i \in [n], \ \{i, i\} \not\subseteq I \}$$

FANS

polyhedral cone = positive span of a finite set of \mathbb{R}^d

= intersection of finitely many linear half-spaces

fan = collection of polyhedral cones closed by faces and where any two cones intersect along a face

simplicial fan = maximal cones generated by d rays

POLYTOPES

polytope = convex hull of a finite set of \mathbb{R}^d

= bounded intersection of finitely many affine half-spaces

face = intersection with a supporting hyperplane face lattice = all the faces with their inclusion relations

simple polytope = facets in general position = each vertex incident to d facets

SIMPLICIAL COMPLEXES, FANS, AND POLYTOPES

P polytope, F face of P

normal cone of F= positive span of the outer normal vectors of the facets containing F normal fan of P= { normal cone of $F\mid F$ face of P }

simple polytope \implies simplicial fan \implies simplicial complex

Permutohedron Perm(n)

$$= \operatorname{conv} \left\{ (\sigma(1), \dots, \sigma(n+1)) \mid \sigma \in \Sigma_{n+1} \right\}$$
$$= \mathbb{H} \cap \bigcap_{\varnothing \neq J \subsetneq [n+1]} \left\{ \mathbf{x} \in \mathbb{R}^{n+1} \mid \sum_{j \in J} x_j \ge {|J| + 1 \choose 2} \right\}$$

Permutohedron Perm(n)

Permutohedron Perm(n)

connections to

- weak order
- reduced expressions
- braid moves
- cosets of the symmetric group

Permutohedron Perm(n)

connections to

- weak order
- reduced expressions
- braid moves
- cosets of the symmetric group

k-faces of Perm(n)

$$\equiv$$
 surjections from $[n+1]$ to $[n+1-k]$

Permutohedron Perm(n)

connections to

- weak order
- reduced expressions
- braid moves
- cosets of the symmetric group

k-faces of Perm(n)

- \equiv surjections from [n+1]to [n + 1 - k]
- \equiv ordered partitions of [n+1]into n+1-k parts

Permutohedron Perm(n)

connections to

- weak order
- reduced expressions
- braid moves
- cosets of the symmetric group

k-faces of Perm(n)

- \equiv surjections from [n+1]to [n + 1 - k]
- \equiv ordered partitions of [n+1]into n+1-k parts
- \equiv collections of n-k nested subsets of [n+1]

COXETER ARRANGEMENT

ASSOCIAHEDRA

ASSOCIAHEDRON

Associahedron = polytope whose face lattice is isomorphic to the lattice of crossing-free sets of internal diagonals of a convex (n+3)-gon, ordered by reverse inclusion

VARIOUS ASSOCIAHEDRA

Associahedron = polytope whose face lattice is isomorphic to the lattice of crossing-free sets of internal diagonals of a convex (n + 3)-gon, ordered by reverse inclusion

Tamari ('51) — Stasheff ('63) — Haimann ('84) — Lee ('89) — (Pictures by Ceballos-Santos-Ziegler)

... — Gel'fand-Kapranov-Zelevinski ('94) — ... — Chapoton-Fomin-Zelevinsky ('02) — ... — Loday ('04) — ...

— Ceballos-Santos-Ziegler ('11)

THREE FAMILIES OF REALIZATIONS

SECONDARY POLYTOPE

Gelfand-Kapranov-Zelevinsky ('94) Billera-Filliman-Sturmfels ('90)

LODAY'S ASSOCIAHEDRON

CHAP.-FOM.-ZEL.'S ASSOCIAHEDRON

Chapoton-Fomin-Zelevinsky ('02) Ceballos-Santos-Ziegler ('11)

THREE FAMILIES OF REALIZATIONS

SECONDARY POLYTOPE

Gelfand-Kapranov-Zelevinsky ('94) Billera-Filliman-Sturmfels ('90)

CHAP.-FOM.-ZEL.'S ASSOCIAHEDRON

Chapoton-Fomin-Zelevinsky ('02) Ceballos-Santos-Ziegler ('11)

TRIANGULATIONS AND SUBDIVISIONS

triangulation of $\mathbf{P} \subset \mathbb{R}^d = \text{collection of triangles with corners in } \mathbf{P}$ such that

- covering property: their union cover the convex hull of P,
- intersection property: any two triangles intersect in a proper face.

FLIP GRAPH

REGULAR SUBDIVISIONS

 ${f P}$ point set in ${\mathbb R}^d$

 $\omega: \mathbf{P} \to \mathbb{R}$ height function

 $\operatorname{Sub}(\mathbf{P},\omega)=$ projection of the lower convex hull of the point set $\{(\mathbf{p},\omega(\mathbf{p}))\mid\mathbf{p}\in\mathbf{P}\}$ regular subdivision = subdivision S such that $\exists\;\omega:\mathbf{P}\to\mathbb{R}^d$ for which $S=\operatorname{Sub}(\mathbf{P},\omega)$

REGULAR SUBDIVISIONS

 ${f P}$ point set in ${\mathbb R}^d$

 $\omega: \mathbf{P} \to \mathbb{R}$ height function

 $\operatorname{Sub}(\mathbf{P},\omega)=$ projection of the lower convex hull of the point set $\{(\mathbf{p},\omega(\mathbf{p}))\mid\mathbf{p}\in\mathbf{P}\}$ regular subdivision = subdivision S such that $\exists\;\omega:\mathbf{P}\to\mathbb{R}^d$ for which $S=\operatorname{Sub}(\mathbf{P},\omega)$

NON-REGULAR TRIANGULATIONS

All triangulations of a convex polygon are regular

SECONDARY FAN

secondary cone of a subdivision S of $\mathbf{P} = C(S) = \{\omega \in \mathbb{R}^{\mathbf{P}} \mid S \text{ refines } S(\mathbf{P}, \omega)\}$ secondary fan of $\mathbf{P} = \{C(S) \mid S \text{ subdivision of } \mathbf{P}\}$

volume vector of a triangulation T of $\mathbf{P} = \Phi(T) = \left(\sum_{\mathbf{p} \in \Delta \in T} \operatorname{vol}(\Delta)\right)_{\mathbf{p} \in \mathbf{P}} \in \mathbb{R}^{\mathbf{P}}$ secondary polytope of $\mathbf{P} = \operatorname{convex}$ hull of $\{\Phi(T) \mid T \text{ triangulation of } \mathbf{P}\}$

THM. For a point set $P \subset \mathbb{R}^P$:

- 1. The secondary polytope of P has dimension $|\mathbf{P}| d 1$.
- 2. The secondary fan of P is the inner normal fan of the secondary polytope of P.
- 3. The face lattice of the secondary polytope of P is isom. to the refinement poset of regular subdivisions of P.

Gelfand-Kapranov-Zelevinsky, Discriminants, resultants, and multidimensional determinants ('94)

Non-regular triangulations and subdivisions are invisible

Secondary polytope of a convex polygon = associahedron

BINARY TREES

T binary tree

Infix search labeling = labeling with [n] with the following local rule

SYLVESTER FAN

cone of a binary tree $T = C(T) = \{ \mathbf{x} \in \mathbb{R}^n \mid x_i \leq x_j \text{ for each edge } i \to j \text{ in } T \}$ sylvester fan $= \{ C(T) \mid T \text{ binary tree on } n \text{ nodes} \}$

$$\mathsf{Asso}(n) \coloneqq \operatorname{conv} \left\{ \mathbf{L}(\mathsf{T}) \mid \mathsf{T} \text{ binary tree} \right\} = \mathbb{H} \cap \bigcap_{1 \le i \le j \le n+1} \mathbf{H}^{\ge}(i,j)$$

$$\mathbf{L}(\mathbf{T}) := \left[\ell(\mathbf{T}, i) \cdot r(\mathbf{T}, i) \right]_{i \in [n+1]} \qquad \mathbf{H}^{\geq}(i, j) := \left\{ \mathbf{x} \in \mathbb{R}^{n+1} \mid \sum_{i \leq k \leq j} x_i \geq \binom{j-i+2}{2} \right\}$$

Loday, Realization of the Stasheff polytope ('04)

$$\mathsf{Asso}(n) \coloneqq \mathrm{conv} \left\{ \mathbf{L}(\mathsf{T}) \mid \mathsf{T} \text{ binary tree} \right\} = \mathbb{H} \cap \bigcap_{1 \le i \le j \le n+1} \mathbf{H}^{\ge}(i,j)$$

$$\mathbf{L}(\mathbf{T}) := \left[\ell(\mathbf{T}, i) \cdot r(\mathbf{T}, i)\right]_{i \in [n+1]}$$

$$\mathbf{H}^{\geq}(i,j) := \left\{ \mathbf{x} \in \mathbb{R}^{n+1} \mid \sum_{i \le k \le j} x_i \ge \binom{j-i+2}{2} \right\}$$

Loday, Realization of the Stasheff polytope ('04)

$$\mathsf{Asso}(n) \coloneqq \mathrm{conv} \left\{ \mathbf{L}(\mathsf{T}) \mid \mathsf{T} \text{ binary tree} \right\} = \mathbb{H} \cap \bigcap_{1 \le i \le j \le n+1} \mathbf{H}^{\ge}(i,j)$$

$$\mathbf{L}(\mathbf{T}) := \left[\ell(\mathbf{T}, i) \cdot r(\mathbf{T}, i)\right]_{i \in [n+1]}$$

$$\mathbf{H}^{\geq}(i,j) := \left\{ \mathbf{x} \in \mathbb{R}^{n+1} \mid \sum_{i \le k \le j} x_i \ge \binom{j-i+2}{2} \right\}$$

Loday, Realization of the Stasheff polytope ('04)

CAMBRIAN TREES

Cambrian tree = directed and labeled (with [n]) trees with the following local rule

CAMBRIAN FANS

cone of a Cambrian tree $T = C(T) = \{ \mathbf{x} \in \mathbb{R}^n \mid x_i \leq x_j \text{ for each edge } i \to j \text{ in } T \}$ Cambrian fan = $\{ C(T) \mid T \text{ binary tree on } n \text{ nodes} \}$

HOHLWEG-LANGE'S ASSOCIAHEDRA

For any signature $\varepsilon \in \pm^{n+1}$, $\operatorname{\mathsf{Asso}}(\varepsilon) := \operatorname{conv} \left\{ \operatorname{\mathbf{HL}}(T) \mid T \ \varepsilon\text{-}\operatorname{\mathsf{Cambrian}} \ \operatorname{\mathsf{tree}} \right\}$

with
$$\mathbf{HL}(\mathbf{T})_j \coloneqq \begin{cases} \ell(\mathbf{T}, j) \cdot r(\mathbf{T}, j) & \text{if } \varepsilon(j) = -\\ n + 2 - \ell(\mathbf{T}, j) \cdot r(\mathbf{T}, j) & \text{if } \varepsilon(j) = + \end{cases}$$

Hohlweg-Lange, Realizations of the associahedron and cyclohedron ('07) Lange-P., Associahedra via spines ('13⁺)

HOHLWEG-LANGE'S ASSOCIAHEDRA

For any signature $\varepsilon \in \pm^{n+1}$, $\operatorname{\mathsf{Asso}}(\varepsilon) := \operatorname{conv} \left\{ \mathbf{HL}(T) \mid T \ \varepsilon\text{-}\mathsf{Cambrian} \ \mathsf{tree} \right\}$

with
$$\mathbf{HL}(\mathbf{T})_j := \begin{cases} \ell(\mathbf{T}, j) \cdot r(\mathbf{T}, j) & \text{if } \varepsilon(j) = -\\ n + 2 - \ell(\mathbf{T}, j) \cdot r(\mathbf{T}, j) & \text{if } \varepsilon(j) = + \end{cases}$$

Hohlweg-Lange, Realizations of the associahedron and cyclohedron ('07) Lange-P., Associahedra via spines ('13⁺)

HOHLWEG-LANGE'S ASSOCIAHEDRA

For any signature $\varepsilon \in \pm^{n+1}$, $\operatorname{\mathsf{Asso}}(\varepsilon) := \operatorname{conv} \left\{ \operatorname{\mathbf{HL}}(T) \mid T \ \varepsilon\text{-}\operatorname{\mathsf{Cambrian}} \ \operatorname{\mathsf{tree}} \right\}$

with
$$\mathbf{HL}(\mathbf{T})_j \coloneqq \begin{cases} \ell(\mathbf{T}, j) \cdot r(\mathbf{T}, j) & \text{if } \varepsilon(j) = -\\ n + 2 - \ell(\mathbf{T}, j) \cdot r(\mathbf{T}, j) & \text{if } \varepsilon(j) = + \end{cases}$$

Hohlweg-Lange, Realizations of the associahedron and cyclohedron ('07) Lange-P., Associahedra via spines ('13⁺)

COMPATIBILITY FANS

COMPATIBILITY FANS

 ${\rm T}^{\circ}$ an initial triangulation δ, δ' two internal diagonals

compatibility degree between δ and δ'

 $(\delta \parallel \delta') = \begin{cases} -1 & \text{if } \delta = \delta' \\ 0 & \text{if } \delta \text{ and } \delta' \text{ do not cross} \\ 1 & \text{if } \delta \text{ and } \delta' \text{ cross} \end{cases}$

compatibility vector of δ wrt T° :

$$\mathbf{d}(\mathbf{T}^{\circ}, \delta) = \left[(\delta^{\circ} \parallel \delta) \right]_{\delta^{\circ} \in \mathbf{T}^{\circ}}$$

compatibility fan wrt T°

$$\mathcal{D}(T^{\circ}) = \{ \mathbb{R}_{\geq 0} \, \mathbf{d}(T^{\circ}, D) \mid D \text{ dissection} \}$$

Fomin-Zelevinsky, Y-Systems and generalized associahedra ('03)

Fomin-Zelevinsky, Cluster algebras II: Finite type classification ('03)

Chapoton-Fomin-Zelevinsky, Polytopal realizations of generalized associahedra ('02)

Ceballos-Santos-Ziegler, Many non-equivalent realizations of the associahedron ('11)

COMPATIBILITY FANS

Different initial triangulations T° yield different realizations

THM. For any initial triangulation T° , the cones $\{\mathbb{R}_{\geq 0} \mathbf{d}(T^{\circ}, D) \mid D \text{ dissection}\}$ form a complete simplicial fan. Moreover, this fan is always polytopal.

Ceballos-Santos-Ziegler, Many non-equivalent realizations of the associahedron ('11)

WHAT SHOULD I TAKE HOME FROM THIS TALK?

THREE FAMILIES OF REALIZATIONS

SECONDARY POLYTOPE

Gelfand-Kapranov-Zelevinsky ('94) Billera-Filliman-Sturmfels ('90)

LODAY'S ASSOCIAHEDRON

CHAP.-FOM.-ZEL.'S ASSOCIAHEDRON

Chapoton-Fomin-Zelevinsky ('02) Ceballos-Santos-Ziegler ('11)

TAKE HOME YOUR ASSOCIAHEDRA!

SECONDARY POLYTOPE

LODAY'S ASSOCIAHEDRON

CHAP.-FOM.-ZEL.'S ASSOCIAHEDRON

TAKE HOME YOUR ASSOCIAHEDRA!

SECONDARY POLYTOPE

Gelfand-Kapranov-Zelevinsky ('94) Billera-Filliman-Sturmfels ('90)

LODAY'S ASSOCIAHEDRON

Loday ('04)

Hohlweg-Lange ('07)

Hohlweg-Lange-Thomas ('12)

CHAPOTON-FOMIN-ZELEVINSKY'S ASSOCIAHEDRON

Chapoton-Fomin-Zelevinsky ('02) Ceballos-Santos-Ziegler ('11)