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SIMPLICIAL COMPLEX

simplicial complex = collection of subsets of X downward closed
exm:
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FANS

polyhedral cone = positive span of a finite set of R?

= intersection of finitely many linear half-spaces

fan = collection of polyhedral cones closed by faces
and where any two cones intersect along a face
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simplicial fan = maximal cones generated by d rays



POLYTOPES

polytope = convex hull of a finite set of R?
= bounded intersection of finitely many affine half-spaces
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face = intersection with a supporting hyperplane
face lattice = all the faces with their inclusion relations
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simple polytope = facets in general position = each vertex incident to d facets




SIMPLICIAL COMPLEXES, FANS, AND POLYTOPES
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P polytope, F face of P

normal cone of [’ = positive span of the outer normal vectors of the facets containing F
normal fan of P = { normal cone of F' | F' face of P }

simple polytope = simplicial fan = simplicial complex




PERMUTAHEDRON

Permutohedron Perm(n)
= conv {(o(1),..., on+1)) o€}
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PERMUTAHEDRON

Permutohedron Perm(n)

=conv{(o(l),...,0n+1)) | o€ X}
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PERMUTAHEDRON

Permutohedron Perm(n)

=conv{(o(l),...,0n+1)) | o€ X}

—HA ) {XeRnH ij2<|J\2+1>}

@#JC [n+1] jes

connections to
e weak order
e reduced expressions
e braid moves
e cosets of the symmetric group




PERMUTAHEDRON

Permutohedron Perm(n)

= conv{(c(1),...,0(n+1)) | o€ X1}

“HA() {XEW ij2(|ﬂ2+1>}

@#JC [n+1] jes

connections to
e weak order
e reduced expressions
e braid moves
e cosets of the symmetric group

k-faces of Perm(n)
= surjections from [n + 1]
to n+1— k|




PERMUTAHEDRON

Pe

rmutohedron Perm(n)
=conv{(o(l),...,0n+1)) | o€ X}
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PERMUTAHEDRON

Pe

rmutohedron Perm(n)
=conv{(o(l),...,0n+1)) | o€ X}
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@132 A21AD connections to
3 e weak order
4]1]3]2 13410 e reduced expressions
4/1123 2 19 e braid moves
@12y 44312 ) e cosets of the symmetric group
14123 13
1]4) k-faces of Perm(n)
14213 1@%%32 11342 3] D = surjections from [n + 1]
a3 I3 to[n+1-k
A1234 = ordered partitions of [n + 1]
11243 into n + 1 — k parts
1121413 1123 = collections of n — k nested
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subsets of [n + 1]



COXETER ARRANGEMENT

Coxeter fan

= fan defined by the hyperplane arrangement
D {x c R ‘ v,
= collection of all cones
32[4]D {X c R**! ‘ z; < xjif w(i) < W(j)}
for all surjections 7 : [n+ 1] — [n + 1 — K|
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(n — k)-dimensional cones

= surjections from [n + 1]
11D to n+1— k]
ordered partitions of [n + 1]
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into n + 1 — k parts

collections of n — k nested
subsets of [n + 1]




ASSOCIAHEDRA




ASSOCIAHEDRON

Associahedron = polytope whose face lattice is isomorphic to the lattice of crossing-free
sets of internal diagonals of a convex (n + 3)-gon, ordered by reverse inclusion
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VARIOUS ASSOCIAHEDRA

Associahedron = polytope whose face lattice is isomorphic to the lattice of crossing-free
sets of internal diagonals of a convex (n + 3)-gon, ordered by reverse inclusion
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Tamari ('51) — Stasheff ('63) — Haimann ('84) — Lee ('89) — (Pictures by Ceballos-Santos-Ziegler)
...— Gel'fand-Kapranov-Zelevinski ('94) — ...— Chapoton-Fomin-Zelevinsky ('02) — ...— Loday ('04) — ...
— Ceballos-Santos-Ziegler ('11)



THREE FAMILIES OF REALIZATIONS

SECONDARY
POLYTOPE
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Gelfand-Kapranov-Zelevinsky ('94)
Billera-Filliman-Sturmfels ('90)

LODAY'S
ASSOCIAHEDRON

Hohlweg-Lange ('07)
Hohlweg-Lange-Thomas ('12)

CHAP.-FOM.-ZEL.'S
ASSOCIAHEDRON

(Pictures by CFZ)

Oz1+fCV2

Chapoton-Fomin-Zelevinsky ('02)
Ceballos-Santos-Ziegler ('11)
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SECONDARY POLYTOPES




TRIANGULATIONS AND SUBDIVISIONS

triangulation of P C R? = collection of triangles with corners in P such that
e covering property: their union cover the convex hull of P,
e intersection property: any two triangles intersect in a proper face.
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REGULAR SUBDIVISIONS

P point set in R?
w : P — R height function

Sub(P,w) = projection of the lower convex hull of the point set {(p,w(p)) | p € P}
regular subdivision = subdivision S such that 3w : P — R? for which S = Sub(P, w)




REGULAR SUBDIVISIONS

P point set in R?
w : P — R height function

Sub(P,w) = projection of the lower convex hull of the point set {(p,w(p)) | p € P}
regular subdivision = subdivision S such that 3w : P — R for which S = Sub(P,w)




NON-REGULAR TRIANGULATIONS

All triangulations of a convex polygon are regular



SECONDARY FAN

secondary cone of a subdivision S of P = C(S5) = {w c R¥ ’ S refines S(P,w)}
secondary fan of P = {C(S) | S subdivision of P}
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SECONDARY POLYTOPE

volume vector of a triangulation T of P = &(T') = (ZpeAeT vol(A)) c RF

peP
secondary polytope of P = convex hull of {&(T") | T' triangulation of P}




SECONDARY POLYTOPE

THM. For a point set P C R¥:
1. The secondary polytope of P has dimension |P| —d — 1.
2. The secondary fan of P is the inner normal fan of the secondary polytope of P.
3. The face lattice of the secondary polytope of P is isom. to the refinement poset of
regular subdivisions of P.

Gelfand-Kapranov-Zelevinsky, Discriminants, resultants, and multidimensional determinants ('94)
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SECONDARY POLYTOPE




LODAY'S ASSOCIAHEDRON




BINARY TREES

T binary tree
Infix search labeling = labeling with [n] with the following local rule
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Rule for binary search trees




SYLVESTER FAN

cone of a binary tree ' = C(T) = {x € R" | z; < x; for each edge i — j in T'}
sylvester fan = {C(T") | T binary tree on n nodes}




LODAY'S ASSOCIAHEDRON

Asso(n) := conv{L(T) | T binary tree} = H N ﬂ Hz(i,j)

1<i<j<n+l1
LT = [T 1T gy FGD) = {x R T
i<k<j

j—i+2
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Loday, Realization of the Stasheff polytope ('04)




LODAY'S ASSOCIAHEDRON

L(T
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Asso(n) := conv{L(T) | T binary tree} = H N ﬂ Hz(i,j)

1<i<j<n+l1

> ax (1)
1<k<j

Loday, Realization of the Stasheff polytope ('04)

= [ecT,i) - r(T. )], (1) = {x e R

i€[n+1]




LODAY'S ASSOCIAHEDRON

L(T

)

Asso(n) = conv {L(T) | T binary tree} = H n (] H"(i, )

1<i<j<n+l1

E T > <‘7 ¢ 2)}
_ 2
1<k<j

Loday, Realization of the Stasheff polytope ('04)

= [T, 4)-r(T,i)], H> (i, j) = {x e R
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CAMBRIAN TREES

Cambrian tree = directed and labeled (with [n]) trees with the following local rule
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Rule for Cambrian trees




CAMBRIAN FANS

cone of a Cambrian tree T' = C(T) = {x € R" | x; <z, for each edge i — j in T'}
Cambrian fan = {C(T') | T binary tree on n nodes}




HOHLWEG-LANGE'S ASSOCIAHEDRA

For any signature ¢ € &1, Asso(e) = conv {HL(T) | T e-Cambrian tree}

with HL(T); = {n—l— 2— (T, §)-r(T,j) ife(j) =+

Hohlweg-Lange, Realizations of the associahedron and cyclohedron ('07)
Lange-P., Associahedra via spines ('137)
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HOHLWEG-LANGE'S ASSOCIAHEDRA

For any signature ¢ € &1, Asso(e) = conv {HL(T) | T e-Cambrian tree}

with HL(T); = {n—l— 2— (T, §)-r(T,j) ife(j) =+

Hohlweg-Lange, Realizations of the associahedron and cyclohedron ('07)
Lange-P., Associahedra via spines ('137)
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HOHLWEG-LANGE'S ASSOCIAHEDRA

For any signature ¢ € &1

Asso(e) = conv {HL(T) | T e-Cambrian tree}

n+2—4L4T,75) r(T,7)

f () = -
if e(j) =+

Hohlweg-Lange, Realizations of the associahedron and cyclohedron ('07)

Lange-P., Associahedra via spines ('137)




COMPATIBILITY FANS




COMPATIBILITY FANS

T° an initial triangulation
9, 0" two internal diagonals

A
compatibility degree between § and ¢’
4 : p
—1 ifo=90
/ .
(0]|0") =<0  if & and & do not cross
|1 if 6 and ¢’ cross
< >
compatibility vector of § wrt T°:
O @)
d<T 75) — [(5 H 5)i| dogTe
compatibility fan wrt T° v
D(T°) ={R>,d(T° D) | D dissection}
Fomin-Zelevinsky, Y-Systems and generalized associahedra ('03)
Fomin-Zelevinsky, Cluster algebras Il: Finite type classification ('03)
Chapoton-Fomin-Zelevinsky, Polytopal realizations of generalized associahedra ('02)
Ceballos-Santos-Ziegler, Many non-equivalent realizations of the associahedron ('11)



COMPATIBILITY FANS

Different initial triangulations T° yield different realizations
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THM. For any initial triangulation T°, the cones {R>,d(T° D) | D dissection} form a
complete simplicial fan. Moreover, this fan is always polytopal.

Ceballos-Santos-Ziegler, Many non-equivalent realizations of the associahedron ('11)




WHAT SHOULD | TAKE HOME
FROM THIS TALK?
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TAKE HOME YOUR ASSOCIAHEDRA!

SECONDARY LODAY'S CHAP.-FOM.-ZEL.'S
POLYTOPE ASSOCIAHEDRON ASSOCIAHEDRON




TAKE HOME YOUR ASSOCIAHEDRA!




THANK YOU



J

\Qa

gy

SECONDARY POLYTOPE

Gelfand-Kapranov-Zelevinsky ('94)
Billera-Filliman-Sturmfels ('90)
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LODAY'S ASSOCIAHEDRON

Loday ('04)
Hohlweg-Lange ('07)
Hohlweg-Lange-Thomas ('12)
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CHAPOTON-FOMIN-ZELEVINSKY'S ASSOCIAHEDRON

Chapoton-Fomin-Zelevinsky ('02)
Ceballos-Santos-Ziegler ('11)



